Contents

	1
<u>1 States of matter</u>	2
2 Atoms, elements and compounds	4
3 Stoichiometry	9
<u>4 Electrochemistry</u>	11
5 Chemical energetics	13
6 Chemical reactions	14
7 Acids, bases and salts	19
8 The Periodic Table	22
<u>9 Metals</u>	24
10 Chemistry of the environment	27
11 Organic chemistry	29
12 Experimental techniques and chemical analysis	39

1 States of matter

1.1 - Solids liquids and gases

Solids	Liquids	Gas
 Fixed shape Fixed volume Cannot flow Cannot compress Arranged so particles are tightly packed in lattice Particles vibrate in place 	 Takes shape of container Fixed volume Can flow Hard to compress Arranged so particles are touching Particles slide over each other 	 No fixed shape No fixed volume Can flow Can compress Free spread out particles Move around quickly and randomly

Changes of state

Melting: Solid \rightarrow Liquid Boiling: Liquid \rightarrow Gas Evaporating: Liquid \rightarrow Gas Condensing: Gas \rightarrow Liquid Freezing: Liquid \rightarrow Solid

Evaporation Vs Boiling

Evaporation	Boiling
 Surface level Does not happen at a fixed	 Happens throughout liquid Happens at a fixed temperature
temperature Bubbles not produced Remaining liquid is cooled	(boiling point) Bubbles produced Remaining liquid is not cooled

Kinetic Particle Theory:

- When a substance is changing it can either
- 1. Gain kinetic energy from heat, which causes the particles to vibrate more vigorously. They then gain enough energy to break free of their bonds. E.g. Liquid \rightarrow Gas
- 2. Lose energy to their surroundings. The particles move closer to each other, moving less vigorously. E.g. Gas \rightarrow Liquid

Factors affecting changing states:

+ Temperature:

Increases kinetic energy of particles, particles move more rapidly.

+ Pressure:

Pushes particles closer to each other. Can change the state of matter if decreased or increased sufficiently (E.g. if a gas is under very high pressures, the particles can be pushed together so densely that a liquid is formed.)

Cooling curve:

Heating curve:

1.2 - Diffusion

The net movement of particles from an area of high concentration to an area of low concentration down a concentration gradient as a result of random particle movement.

Factors affecting the rate of diffusion:

- 1. Relative molecular mass: The heavier the molecular mass, the slower the diffusion
- 2. **Temperature**: The higher the temperature, the faster the diffusion, as particles have more energy and move quicker.

2 Atoms, elements and compounds

Elements	Compounds	Mixtures
- Atoms of an element are identical to each other	 Atoms of different elements bond together in a chemical reaction to form compounds 	 Particles that are mixed without any chemical bonds
- They cannot be changed chemically into another	- Can be changed chemically to a different compound	 Mixture retains properties of its particles
element - Cannot be broken down into simpler forms	- Can be broken down into simpler forms	 Can be separated using techniques such as filtration and evaporation.

2.1 - Elements, compounds and mixtures

2.2 - Atomic structure and the Periodic Table

Structure of an atom

	Relative charge	Relative mass
Proton	+ 1	1
neutron	0	1
Electron	- 1	1/1840 (negligible)

Richienb under https://creativecommons.org/licenses/by-sa/4.0/

Atomic number: The number of protons in an atom of an element **Nucleon number:** The number of protons and neutrons in an atom of an element

Electronic configuration - The way electrons in an atom of an element are distributed in its shells **First shell** can hold up to 2 electrons **2nd 3rd shells** can hold up to 8 electrons E.g. : Potassium (19 electrons) = 2, 8, 8, 1 Carbon (6 electrons) = 2, 4

- The number of electron shells occupied represents an element's **period**
- E.g. Potassium is in period 4 and Carbon is in period 2
 - The number of outer shell electrons (electron valency) is equivalent to an element's **group number**

E.g. Potassium is in group 1 and Carbon in group 4

*Note that group VIII elements have full outer shells

2.3 - Isotopes

Isotopes are atoms of the same element with the same number of protons but different number of neutrons.

• Isotopes of an element have the same electronic configuration, and thus still have the same chemical properties.

Relative atomic mass (the average mass of isotopes of an element in comparison to 1/12th of a mass of an atom of carbon-12):

(Abundance x mass number) + (abundance x mass number) / 100

2.4 - lons and ionic bonds

Ion - an atom or group of atom that have an electric charge (+ or -) **Cations**: Positively charged ions **Anions**: Negatively charged ions

• An atom loses or gains electrons to obtain a full outer shell, which will stabilise the atom. E.g.:

Potassium has an ion of 1+, it loses an electron to achieve a full outer shell 2, 8, 8, $1 \rightarrow 2$, 8, 8 Oxygen has an ion of 2-, it gains 2 electrons to achieve a full outer shell 2, $6 \rightarrow 2$, 8

Ionic bonds:

-

The strong electrostatic force between oppositely charged ions

- Between a metal (positive ion) and a nonmetal (negative ion)
- lonic bonds are strong: high melting and boiling point (lots of energy is required to break the strong bonds)
- Soluble in water
- Conducts electricity when molten or aqueous only
- Brittle (positive and positive charges repel whe layers slide over each other when hit)
- E.g. Potassium oxide

Ionic bonds are represented by a dot and cross diagram:

2.5 - Simple molecules and covalent bonds

Covalent bonds:

The sharing of pairs of electrons between 2 atoms to achieve full electron valency.

- Between nonmetal and nonmetal (2 negative ions)
- Weak intermolecular forces: low melting and boiling point (less energy is required to break the bonds)
- Insoluble in water
- Does not conduct electricity
- E.g. Carbon dioxide

Covalent bonds are represented by a dot and cross diagram in a different form:

2.6 - Giant covalent structures

The result of many atoms bonded covalently

The 2 covered	giant covale	nt structures:
---------------	--------------	----------------

Graphite	Diamond
 Used as a lubricant and pencils Hexagonal structure Once carbon bonded to 3 carbon: 1 delocalised Layers can be easily rubbed off as they are soft Insoluble Conducts electricity: delocalised electron 	 Used in cutting tools Tetrahedral structure One carbon is bonded to 4 carbon Hard Insulator Do not conduct electricity Insoluble

• Graphite and diamond and allotropes: They are both made up of carbon, but have different structures

*Silicon (IV) oxide, SiO2, is another example of a giant covalent structure. It has similar properties to diamond and also has a tetrahedral structure

- One oxygen bonded to 2 silicon
- 1 silicon bonded to 4 oxygen

2.7 - Metallic bonding

The electrostatic force of attraction between positive ions and a sea of delocalised electrons

High melting a boiling point

(due to strong electrostatic forces)

- Good conductor of electricity

(due to the mobile electrons to carry the current)

- Malleable and ductile

(positive ions are arranged in layers, when it is hit, the layers can slide over and form new bonds easily)

3 Stoichiometry

3.1 - Formulae

Key definitions:

Molecular formula - The number and types of different atoms in one molecule **Empirical formula -** The simplest whole number ratio of different atoms or ions in a compound

Empirical formula:

molecular Empirical $C_6H_{12}O_6 \longrightarrow CH_2O$

To form an ionic compound's formula,

List of complex ions to remember:

How to write ionic equations:

E.9
()
$$HCI(qq) + AqNO_3(aq) \longrightarrow AqCI(s) + HNO_3(aq)$$

(2) $H^{\dagger}(aq) + CI^{-}(aq) + Aq^{\dagger}(aq) + NO_3^{-}(aq) \longrightarrow AqCI(s) + H^{\dagger}(aq) + NO_3^{-}(aq)$
(3) $H^{\dagger}(aq) + CI^{-}(aq) + Aq^{\dagger}(aq) + NO_3^{-}(aq) \longrightarrow AqCI(s) + H^{\dagger}(aq) + NO_3^{-}(aq)$
(4) $CI^{-}(aq) + Aq^{\dagger}(aq) \longrightarrow AqCI(s) + H^{\dagger}(aq) + NO_3^{-}(aq)$
(4) $CI^{-}(aq) + Aq^{\dagger}(aq) \longrightarrow AqCI(s)$

- 1. Write out the full equation, including states
- 2. Split all **aqueous** compounds into its ions
- 3. Cross out any spectator ions (ions that are in both products and reactants)
- 4. Rewrite your final equation!

*to know if a compound is aqueous, refer to the solubility chart (chp 7) *all acids are aqueous

3.2 - Relative masses of atoms and molecules

Relative molecular mass: The sum of the relative atomic masses, used for ionic compounds. (relative atomic mass - the average mass of isotopes of n element in comparison to 1/12th of a mass of carbon-12)

3.3 - The mole and the Avogadro constant

Mole - the unit of amount of substance where one mole contains 6.02×10^{23} particles Avogadro's constant = 6.02×10^{23}

Formulas used for mole calculations:

4 Electrochemistry

4.1 - Electrolysis

The breakdown of an ionic compound in aqueous or molten state through passage of electricity.

An example of an electrolysis setup:

Mahdieh.keshmiri under https://creativecommons.org/licenses/by-sa/4.0/

Anode - positive electrode, attracts anions (negative ions), where oxidation takes place **Cathode -** negative electrode, attract cations (positive ions), where reduction takes place **Electrolyte -** The molten/aqueous substance that is being used for electrolysis

Why are carbon/graphite electrodes used?

- 1. Graphite conducts electricity
- 2. Graphite is inert

Molten electrolysis

- Metal (cation) and nonmetal (anion) produced
- E.g. Aluminium oxide

Anode (oxidation) = Oxygen gas produced

$$40H^{-} \longrightarrow 2H_2O + O_2 + 4e^{-}$$

Cathode (reduction) = Aluminium solid formed

$$AI^{3+} + 3e^{-} \rightarrow AI$$

Half equations: Equations that show reduction or oxidation

Aqueous electrolysis rules

Dilute solution: OH- (oxygen) and H+ (hydrogen) are produced at anode and cathode respectively

Concentrated solution: Halogen produced at the anode (if no halogen present, oxygen is produced), and a metal less reactive than hydrogen at the cathode (if no suitable metal is present, hydrogen is produced)

E.g.

Concentrated hydrochloric acid – Cathode: hydrogen Anode: chlorine Concentrated aqueous copper nitrate – Cathode: copper Anode: oxygen Dilute hydrochloric acid – Cathode: hydrogen Anode: oxygen

Electrolysis of aqueous copper sulphate with...

Carbon electrodes (inert electrodes): concentration of copper in electrolyte reduces, electrolyte loses colour (blue \rightarrow colourless). Ions are taken from the electrolyte.

anode	cathode
$40H^{-} \longrightarrow 2H_{2}O + O_{1} + 4e^{-}$	$Cu^{2+} + 2e^- \longrightarrow Cu$

Copper electrodes (reactive electrodes): concentration of copper in electrolyte stays the same. **Colour does not change** (stays blue). Ions move from anode to cathode, not from electrolyte. Anode loses mass, cathode gains mass.

anode	cathode
$Cu \longrightarrow Cu^{2+} + 2e^{-}$	$Cu^{2+} + 2e^- \longrightarrow Cu$

Electroplating:

- To enhance appearance
- To prevent corrosion

Example: 1. Electroplating jewellery in silver

Anode: metal used for plating. Loses mass

Cathode: metal to be plated. Gains the lost mass

lons move from anode \rightarrow cathode

4.2 - Hydrogen-oxygen fuel cells

Using hydrogen and oxygen to produce electricity, with water as the only chemical product.

Advantages	Disadvantages
Does not have to be rechargedNo pollution made	FlammableIt is hard to store gas

5 Chemical energetics

5.1 - Exothermic and endothermic reactions

Activation energy: The minimum amount of energy necessary for a reaction to occur

Exothermic reaction: Transfers energy to the surroundings leading to increase in surrounding temperatures. Bond making.

Endothermic reaction: Takes in energy from surroundings leading to decrease in the temperature of surroundings. Bond breaking.

Enthalpy change: the transfer of thermal energy during a reaction.

How to calculate enthalpy change?

Total energy of reactants - Total energy of products

*enthalpy change is negative for exothermic reactions and positive for endothermic reactions

6 Chemical reactions

6.1 - Physical and chemical changes

Chemical Vs Physical changes:

Physical	Chemical
 Can be undone easily No new material formed: chemically the same Change in state 	 Difficult to reverse Colour change Bubbles formed New materials formed

6.2 - Rate of reaction

Factors that increase the rate of reaction:

- Increasing concentration of the reactants/products
- Increasing the pressure used
- Increasing the temperature used
- Increasing the surface area of the reactants
- Using a catalyst

Catalyst: A substance that increases the rate of reaction while remaining unchanged (not used up) at the end of the reaction

How to measure rate of reaction:

- 1. The mass of product produced/time
- 2. The mass of reactant used/time

Collision theory:

For a reaction to take place, the particles must:

- 1. Collide with each other
- 2. They must collide with enough activation energy successfully

Thus, to increase the chances of successful collisions you can,

- Increase the number of particles colliding (by increasing the concentration of reactants or increasing pressure)
- Increase the kinetic energy of the particles (by increasing the temperature)
- Increase the frequency of collision (by increasing the surface area of the products)
- Add a catalyst (which would lower the activation energy required of the particles)

6.3 - Reversible reactions and equilibrium

A reversible reaction is represented by the symbol: 🛹

Examples of reversible reactions include hydrated and anhydrous compounds:

- When you add water to anhydrous compounds they become hydrated
- When you heat hydrated compounds they become anhydrous

Hydrated salt: chemically combined with H20 **Anhydrous salt:** does not contain H20

Anhydrous copper(II) sulphate = Anhydrous cobalt(II) chloride (BLUE) =

(WHITE) Hydrated copper(II) sulphate (BLUE)
 Hydrated cobalt(II) chloride (PINK)

crystallisation

$$CuSO_4 + 5H_2O \longrightarrow CuSO_4 \cdot 5H_2O$$

 $water of$
 $crystallisation$
 $CoCl_2 + 6H_2O \longrightarrow CoCl_2 \cdot 6H_2O$
 $water of$

Water of crystallisation: The water present in a hydrated compound

A reaction in equilibrium: When the forward and the backward reaction are equal in rate, the concentration of reactants and products remain constant, and the reaction happens in a closed system.

equilibrium shifts (how factors affect the yield of forward and backward reactions):

1. Increase in temperature

Favours side with endothermic reaction

2. Decrease in temperature

Favours side with exothermic reaction.

1. Increase in pressure

Favours side with less moles

2. decrease in pressure

Favours side with more moles

Increase in concentration
 Favours the production of products
 Decrease in concentration
 Favours the production of reactants

1. Adding a catalyst

Increases rate of reaction but **does not** affect equilibrium shifts/yield

*yield and rate of reaction are NOT equivalent

Processes studied:

Haber process	Contact process
 Creation of <i>ammonia</i> Reacting N2 and H2 to produce NH3. An exothermic process Nitrogen from air and hydrogen from methane N2 + 3H2 = 2NH3 Conditions: 200 atm (20,000 kPa) iron catalyst Temp of 450 degrees celsius 	 Making of sulfuric acid Burn sulphur in air or roast sulphur ore to produce sulphur dioxide React with sulphur dioxide with oxygen to produce sulphur trioxide (Reversible part) Sulphur trioxide react with sulphuric acid to produce Oleum (H2S2O7) Oleum reacts with water to produce sulphuric acid have to transfer into oleum because directly it is highly exothermic and the fumes are toxic. S + 02 → S02 2S02 + 02

18 StudyVault Why aren't **lower temperatures** used since the **reactions are exothermic** (exothermic reactions favour lower temperatures)?

- Below 450 degrees celsius, the rate reaction is too slow
- Above 450 degrees celsius, the yield of forward reaction decreases

Why aren't higher pressures used (since higher pressure favours the side with less moles)?

- Higher pressures are dangerous
- Higher pressures are more expensive to maintain

6.4 - Redox

A reaction that undergoes both oxidation AND reduction

What is oxidation and reduction?

Oxidation	Reduction
 Loss of hydrogen Gain of oxygen Loss of electrons (OIL) Oxidation is loss of electrons Increase of oxidation state 	 Gain of hydrogen Loss of oxygen Gain of electrons (RIG) Reduction is gain of electrons Decrease in oxidation state

1. Elements not combined (alone) have an oxidation state of 0 e.g H2, Mg

2. Oxidation state = charge (it is represented as roman numerals) E.g. cobalt(II) has an oxidation state of +2

3. Sum of all oxidation states in a a molecule is 0

4. In complex ions (e.g SO4), sum of oxidation numbers equal to charge

Examples:

Oxidising agent: The substance that causes another substance to be oxidised in a reaction. It itself is reduced

Reducing agent: The substance that causes another substance to be reduced in a reaction. It itself is oxidised

Potassium (VII) manganate : oxidising agent Purple to colourless when it is reduced

Potassium iodide: reducing agent Colourless to yellow/brown when it is oxidised

7 Acids, bases and salts

7.1 - The characteristic properties of acids and bases

Acids:

They are proton donors

- They have a pH of less than 7
- Oxides or hydroxides of nonmetals are acidic
- Aqueous solutions of acids contain H+ ions

Acid reactions:

Metal + acid \rightarrow salt + hydrogen

Metal Oxide + acid \rightarrow salt + water (neutralisation)

Metal carbonates + acid \rightarrow salt + water + carbon dioxide

Metal hydroxide + acid \rightarrow salt + water (neutralisation)

Weak acid: partially dissociates in water (e.g ethanoic acid): CH3COOH (pH 4-6) **Strong acid**: fully dissociates with water (means that the hydrogen ions are broken off fully) e.g. HCl (pH 1-3)

Dissociation equations: Strong acid (hydrochloric acid)

 $HCI \rightarrow H^{+} + CI^{-}$

Weak acid (ethanoic acid)

$$CH_3COOH \rightarrow CH_3COO^- + H^+$$

Identification of acids:

- Turns damp blue litmus paper red
- Turns thymolphthalein colourless
- Turns methyl orange red

Bases:

They are proton acceptors

- They have a pH above 7
- alkalis are soluble bases (all alkalis are bases but not all bases are alkalis)
- Oxides or hydroxides of metals are basic
- Aqueous solutions of alkalis contain OH- ions

Base reactions:

```
Base + acid → salt + water
Base + ammonium salt → ammonia + water + salt (decomposition reaction)
E.g. NaOH + (NH4)2SO4 → NH3 + H2O + Na2SO4
```

Weak bases: partially dissociates in water (pH 8-10) **Strong bases**: fully dissociates with water (pH 11-14)

Identification of bases:

- Turns damp red litmus paper blue
- Thymolphthalein turns blue
- Methyl orange turns yellow

Neutralisation reaction between acids and alkali's ionic equation: $H+ (aq) + OH- (aq) \rightarrow H2O(I)$

7.2 - Oxides

- metallic oxide = base E.g CuO and CaO
- Non metallic oxide = acid E.g SO2 and CO2

Amphoteric oxide: Oxides that react with both base and acid to produce salt and water. E.g. Zinc oxide and aluminium oxide

Neutral oxides: oxides that do not react with either acid nor base. E.g carbon monoxide and nitric oxide

7.3 - Preparation of salts

Solubility rules of salts:

Salts	Soluble	not soluble
-------	---------	-------------

Sodium, potassium and ammonium	All	none
Nitrates	All	None
Chlorides	Most	Silver and lead
Sulphates	Most	Barium, calcium and lead
Carbonates	sodium, potassium and ammonium	Most

Methods of preparing salts:

Insoluble s + soluble	salt prep - soluble (precipitation)	Solubl acid (r Na)	e salt prep - metal + not containing K, NH4,	Solubl alkali (contai	e salt prep - acid + (titration) salt ning K, NH4, Na
1. 2.a of s	queous solutions soluble substances	1.	React insoluble base and acid	1.	Prepare acid in a burette
2. Filt 3. Rin	rate filtered out se with distilled	2. 3.	Hiter out excess solid Heat solution in evaporating dish over	2.	Prepare a known amount of alkali in a beaker
wat 4. Dry	ter / residue in oven	4.	a water bath Stop when crystals start to appear around	3. 4.	Add and suitable indicator into alkali Slowly drip the acid
		5.	the edge Leave solution at room temp for crystals to form		into the alkali until it reaches its end point (when the indicator changes colour)
				5.	Record the volume of titrant used
				6.	Repeat experiment without the indicator
				7.	Solution is evaporated and cooled to form crystals

8 The Periodic Table

8.1 - Arrangement of elements

The elements in the periodic table are arranged in order of increasing proton number

Sandbh under https://creativecommons.org/licenses/by-sa/4.0/

- Metals are found to the left of the periodic table
- Non metals are found to the right of the periodic table
- Members of the same group have the same electron valency
- Elements of the same group have the same chemical properties (due to same electron valency)
- The group number of an element also determines its ionic charge E.g Group 2 has charge +2
- The period of a group represents the number of shells an element occupies

8.2 - Group I properties

- They are soft metals that can be cut with a knife
- They are known as alkali metals
- They react with water to form an alkali solution

As you go down the group:

- 1. Melting point decreases
- 2. Density increases
- 3. Reactivity increases

8.3 - Group VII properties

- They exist as diatomic molecules E.g Br2, Cl2
- They are known as halogens
- More reactive halogens can displace less reactive halogens in a reaction

As you go down the group:

- 1. Density increases
- 2. Reactivity increases

Appearance of halogens:

The colour gets darker down the group

Chlorine	Pale yellow-green gas
Bromine	Red-brown liquid
lodine	Grey-black solid

Displacement chart of halogens: more reactive halogens can displace less reactive halogens in a reaction

	Potassium chloride	Potassium bromide	Potassium iodide
Chlorine	x	Potassium chloride and Bromine produced	Potassium chloride and lodine produced
Bromine	No reaction	x	Potassium bromide and lodine produced
lodine	No reaction	No reaction	x

8.4 - Transition elements

Found around the middle of the periodic table

Properties:

- High density
- High melting and boiling point
- Form coloured compounds
- They act as catalysts
- Their ions have variable oxidation states E.g Iron(II) and Iron(III)

8.5 - Noble gases (group VIII)

- Noble gases have full electron shells so they are inert (they do not react) and stable
- They exist as monatomic gases E.g. Ar, He

9 Metals

9.1 - Properties of metals

- 1. Metals are conductors of heat and electricity
- 2. the are malleable and ductile
- 3. High melting and boiling points

Metal reactions:

Metal + acid \rightarrow salt + hydrogen

 $Metal + cold water \rightarrow metal hydroxide + hydrogen$

Metal + steam \rightarrow metal oxide + hydrogen

Metal + oxygen \rightarrow metal oxide

9.2 - Uses of metals

- 1. Aluminium
- Used in aircrafts as it has a low density
- It used in electrical cables due to its low density and conductivity
- Used in food storage as it is corrosion resistance
- 2. Copper
- Used in electrical wiring due to copper being ductile and a conductor

9.3 - Alloys and their properties

Alloys are mixtures of metals

E.g.

- 1. Brass; mixture of zinc and copper
- 2. Stainless steel; mixture of iron, carbon, chromium and nickel
- Alloys are often stronger than pure metals due to the differently sized atoms, that stops the layers from sliding over each other

dyvaults

*stainless steel is used in cutlery due to its rust resistance

9.4 - Reactivity series

Most reactive

- 1. Potassium K
- 2. Sodium Na
- 3. Lithium Li
- 4. Calcium Ca
- 5. Magnesium Mg
- 6. Aluminium AI: seems less reactive due to the oxide layer it has
- 7. Carbon C
- 8. zinc Zn
- 9. Iron Fe
- 10. Hydrogen H
- 11. copper Cu
- 12. silver Ag
- 13. Gold Au

Least reactive

More reactive metals can displace less reactive metals in a reaction.

Reactivity series reactions:

	Steam	Water	Acid
Potassium K	Reacts with steam	Reacts with cold	Reacts explosively to
Sodium Na	hydroxide	form hydroxide	lonn hydrogen gao
Lithium Li			
Calcium Ca			

27

Magnesium Mg	Reacts with steam vigorously to form hydroxide	Reacts slowly to form hydroxide	Reacts to form hydrogen
zinc Zn Iron Fe	Reacts slowly to form hydroxide	Reacts slowly to form hydroxide	Reacts slowly to form hydrogen
copper Cu silver Ag Gold Au	Does not react	does not react	does not react

9.5 - Corrosion of metals

Sacrificial protection: The reaction of a more reactive metal in place of another metal to protect it from corrosion

E.g. Galvanising iron using zinc

• Zinc is more reactive than iron. Reacts instead of iron. Zinc oxidises (loses electrons)

When Iron is in the presence of water and oxygen, RUST is formed (hydrated iron(III) oxide)

rust prevention: painting, greasing, coating with plastic, galvanising

9.6 - Extraction of metals

2 processes studied:

Extraction of Iron (blast furnace)	Extraction of Aluminium oxide (electrolysis)

- Substances added: (iron ore) Hematite, coke, • limestone, air
- $C + O2 \rightarrow CO2$ (produces heat) •
- $CO2 + C \rightarrow CO$ (reduction)
- $3CO + Fe2O3 \rightleftharpoons 3CO2 \text{ and } 2Fe \text{ (redox)} + O2 \text{ (thermal decomp})$ + 02 (thermal decomposition) •
- CaO + SiO2 \rightarrow CaSiO3 (neutralisation: removes • impurities - produces slag))

- Substances added: (aluminium ore) Bauxite • purified to Al2O3 and Cryolite
- Al3+ + 3e- \rightarrow Al (cathode) •
- $202 \rightarrow 02 + 4e$ (anode) •
- Anode needs to be replaced continuously as • carbon reacts with the O2 produced to produce CO2
- Cryolite usage: ٠
- 1. Used as solvent
- 2. Lowers working temp
- 3. Increases conductivity of electrolysis

10 Chemistry of the environment

10.1 - Water

Test for water:

- 1. Cobalt(II) chloride: blue to pink
- 2. Copper(II) sulphate: white to blue

Test for water purity: Heat to boiling point (pure water boils at 100 degrees celsius)

- Distilled water is used in experiments as they have the least impurities

What is found in natural water?

- Dissolved oxygen (good for aquatic life)
- Metal compounds
- Plastic
- Sewage
- Harmful microbes
- Nitrates and phosphates from fertilisers (deoxygenation of water due to eutrophication)

How is water treated?

- Treated water is used for: drinking
- 1. Screen filter (large particles removed)
- 2. Coagulate and skim off (removal of smaller insoluble particles)
- 3. Filtration (small particles)
- 4. Use of carbon to remove taste and odour
- 5. Chlorination to kill pathogens

10.2 - Fertilisers

Fertiliser used to improve plant growth and health:

- NPK fertilisers Nitrogen, phosphorus, potassium for plant growth
- Ammonium (NH4) salts

10.3 - Air quality and climate

Air composition -

78% Nitrogen 21% Oxygen 0.04% CO2 <1% water vapour and other noble gases

Pollutants found in air:

	Source	Affect
CO2 (also found in clean air)	Combustion	Global warming + climate change
со	Incomplete combustion	Toxic gas Acid rain
CH4 (methane)	Decomposition of vegetation Waste gases from animals Global warming + climic change	
Oxides of nitrogen	High temp from car engines react O2 and N2Acid rain, photochemi smog and respiratory	
Sulphur dioxide	Sulphur impurities in crude oil and combustion of fossil fuels	Acid rain

Greenhouse gases: CO2 and CH4 -

- They absorb heat energy from the earth, and re-emits it back into our atmosphere
- Heat is trapped instead of released into space, causing global warming

How to reduce the effects of pollutants:

- 1. Plant trees (reduces CO2 through plants photosynthesizing)
- 2. Reduce livestock (reduce methane)
- **3.** Decrease fossil fuel use (reduce CO2)
- 4. Use hydrogen and renewable energy (reduce CO2)
- 5. Flue gas desulfurization using calcium oxide (reduces creation of sulphur dioxide)
- 6. Use catalytic converters (reverses the creation of CO and NO)

The use of catalytic converters in an engine: 2CO + 2NO \rightarrow 2CO2 + N2

Photosynthesis in plants:

Carbon dioxide + water \rightarrow glucose + oxygen Conditions:

- Light
- Chlorophyll

11 Organic chemistry

11.1 - Formulae, functional groups and terminology

Key definitions:

Saturated compound: A compound where all carbon-carbon bonds are single **Unsaturated compound:** A compound where at least one carbon-carbon bond is not single (alkenes)

Functional group: An atom or group of atoms that determine the chemical properties of a homologous series

Homologous series: a family of similar compounds with the same chemical properties due to the same functional group

Condensed formula: The formula that shows the way a molecule's atoms are arranged

ethane : CH₃CH₃

Displayed formula: The drawn out structure of the molecule and its arranged atoms

Members of the same homologous series have:

- 1. Same chemical properties
- 2. Trend in physical properties
- 3. Same functional group
- 4. Same general formula
- 5. Differ from one member to another by one -CH2- unit

Homologous series studied:

- 1. Alkanes
- 2. Alkenes
- 3. Alcohols
- 4. Carboxylic acids

Homologous series	Alkane	Alkene	Alcohol	Carboxylic acid
General formula	CnH2n+2	CnH2n	CnH2n+10H	CnH2n+1COOH
Functional group	C-C	C double bond C	он	СООН

E.g.

An alkane with 2 carbon's formula is C2H6 (ethane) An alcohol with 4 carbon's formula is C4H9OH (butanol)

11.2 - Naming organic compounds

Number of carbons	Prefix
1	meth-
2	eth-
3	prop-
4	but-

Homologous series	Suffix
Alkane	-ane
Alkene	-ene
Alcohol	-ol
Carboxylic acid	-oic acid

E.g. An alkene with 3 carbons = propene A carboxylic acid with 2 carbons = ethanoic acid

All displayed formulas:

*Alkenes:

• The number represents the location of the double carbon bond

*Alcohols:

• The number represents the location of the -OH bond

Structural isomers: compounds with the same molecular formula but different structural formula

11.3 - Fuels

Hydrocarbons: compounds that contain hydrogen and carbon ONLY **Petroleum**: a mixture of hydrocarbons

Fossil fuels: Coal, Natural gas and petroleum

*Methane is mainly made out of natural gas

Petroleum can be separated into different products with different uses. This is done using fractional distillation:

Wikimedia commons

11.4 - Alkanes

General formula: CnH2n+2

• They are saturated hydrocarbons (single C-C bonds)

Reactions of alkanes:

- generally unreactive except:

Combustion AND/OR

Substitution by chlorine (photochemical reaction, UV light needed to provide activation energy)

Substitution: where an atom is replaced by another atom

Substitution by chlorine in methane:

Wethare: H-c-H
H
H-c-H + Cl-cl
$$\rightarrow$$
 H-c-cl + H-cl
H
CH₄ + Cl₂ \rightarrow CH₃Cl + Hcl
H-c-cl + Cl-cl \rightarrow H-c-cl + H-cl
H
CH₃Cl + Cl₂ \rightarrow CH₂Cl₂ + Hcl
H-c-cl + Cl-cl \rightarrow H-c-cl + H-cl
H
CH₃Cl + Cl₂ \rightarrow CH₂Cl₂ + Hcl
H-c-cl + Cl-cl \rightarrow H-c-cl + H-cl
H
CH₂Cl₂ + Cl₂ \rightarrow CHCl₃ + Hcl
H-c-cl + Cl-cl \rightarrow Cl + Cl + Cl
CH₂Cl₂ + Cl₂ \rightarrow CHCl₃ + Hcl

11.5 - Alkenes

General formula: CnH2n

• They are unsaturated hydrocarbons

How are they formed?

- Cracking

Taking a long chain alkane and heating it to form the products of

udyVault

37

- 1. An alkene and hydrogen
- OR
 - 2. An alkene and an alkane

Cracking of Octane:
(D)
$$C_8H_{18} \longrightarrow C_8H_{16} + H_2$$

(octene)
(octene)
(octene)
(octene)
(octene)
(octene)
(octene)
(octene)
(octene)
(propene)
(pentane)

Reactions of alkenes:

Alkenes

1. Test for unsaturated hydrocarbons (alkenes): Add bromine water (turns orange brown to colourless)

2. Addition reaction: adding on new atoms to the molecule

double bond is broken to free up bonds for the addition -

Element is added

*The addition of hydrogen turns a alkenes back to an alkane (this requires a NICKEL catalyst) *The addition of oxygen and hydrogen (steam) turns an alkene to an alcohol (this requires a PHOSPHORIC ACID catalyst)

Examples: (using ethene)

38

11.6 - Alcohols

General formula: CnH2n+10H

How are they formed?

- 1. Addition reaction of alkenes with steam (catalytic addition; a large scale process)
- 2. Fermentation of aqueous glucose

Fermentation	Catalytic addition of steam to ethene
Conditions: 1. 25-35 degrees celsius 2. Yeast 3. Anaerobic respiration; no oxygen It is a batch process + The reactants are renewable	Conditions: 1. 300 degrees celsius 2. 60 atm (6000 kPa) 3. Phosphoric acid catalyst + It is a continuous process + The alcohol produced is pure
 He reactants are renewable Does not require a lot of energy It is a slow process The alcohol produced is not pure and must be separated 	 It is expensive It is not renewable (requires ethene, sourced from petroleum)

Reactions of alcohols:

Combustion

Uses of ethanol:

- 1. As a solvent
- 2. As a biofuel

11.7 - Carboxylic acids

General formula: CnH2n+1COOH

How are they formed?

1. Oxidising an alcohol with an oxidising agent (E.g Potassium manganate(VII))

39

2. Bacterial oxidation of an alcohol in the production of vinegar

Reactions of carboxylic acids:

1. Reacts like a normal acid (weak acid; pH 4-6)

Metal + acid \rightarrow salt + hydrogen Metal Oxide + acid \rightarrow salt + water (neutralisation) Metal carbonates + acid \rightarrow salt + water + carbon dioxide Metal hydroxide + acid \rightarrow salt + water (neutralisation) 2. Reacts with alcohol using sulfuric acid to form an ester • Esters are sweet smelling liquids often used in flavourings and perfumes Naming an ester: _yl _ate (name of alcohol)yl (name of carboxylic acid)ate E.g. Methanol + Propanoic acid \rightarrow Methyl propanoate Propanol + Ethanoic acid \rightarrow Propyl ethanoate Ethanoic Acid : propanol : · carboxylic $\ddot{H} - C - C = 0$ ſ acid loses OH C - L -C-0-11 ſ ł Ч ١ ļ · Arcohol loses H н 0 I H propyl ethanoate : 0 H H C - H н ester н и н bond

11.8 - Polymers

Polymers are large molecules formed by the joining of many monomers

E.g. the monomer propene turns into the polymer **poly**propene

There are z methods of forming polymers

Addition polymerisation	Condensation polymerisation
 only for alkenes Monomer → repeating unit →polymer 	Monomer \rightarrow repeating unit \rightarrow polymer
	There are 2 products of this polymerisation
E.g.	 Polyesters: made with diols and dicarboxylic acids
	2. Polyamides: made with diamides and

dicarboxylic acid diol

$$H = 0^{-1} \stackrel{\circ}{c} = 10^{-1} \stackrel{\circ}{c} = 0^{-1} \stackrel{\circ}{H} = 10^{-1} \stackrel{\circ}{H} \stackrel{\circ}{L} \stackrel{\circ}$$

Difference between condensation and addition polymerisation:

- Addition polymerisation involves one monomer repeated, and only the polymer forms (one product)
- Condensation involves multiple monomers repeated, a small molecule is removed as a byproduct (usually water, so more than one product)

42 StudyVaul

Plastics:

- made from polymers

Implications for their disposals:

1. Accumulation in landfills

Takes a long time to biodegrade, smelly

2. Combustion of plastics

Releases toxic gases

3. Water pollution

Kills aquatic life and releases toxins

12 Experimental techniques and chemical analysis

12.1 - Experimental design

Apparatus:

- Stopwatches measuring time
- Thermometers measuring temperature
- Balances measuring mass
- Burretes measuring liquid volume
- Volumetric pipettes measuring a fixed volume of liquid
- Measuring cylinders measuring liquid volume
- Gas syringe measuring gas volume

Solvent: dissolves a solute **Solute:** the substance getting dissolved

Saturated solution: solution with the maximum concentration of dissolved solute at a temperature

Residue: the substance left after filtration of a solution **Filtrate:** the substance produced after successfully passing through the filter

12.2 - Acid-base titrations

Titration is the neutralisation of a soluble base (potassium, ammonium and sodium hydroxides) and acid

Equipment:

- Burette
- Volumetric pipette
- Indicator

- 1. Fill a burette with acid
- 2. Fill a conical flask with a known volume of an alkali (using volumetric palette)
- 3. Add a few drops of indicator into the alkali (e.g thymolphthalein)
- 4. Drop the acid from the burette into the alkali, swirling the solution as you go
- 5. Stop when the colour of the indicator changes (it has reached its end-point)
- 6. Record the volume of acid used
- 7. Repeat the experiment without the indicator, using the known volume of acid

12.3 - Chromatography

Chromatography is used to separate soluble inks and smaller molecules (e.g amino acids)

Alicia Fagerving (WMSE) under https://creativecommons.org/licenses/by-sa/3.0/

Rf value equation:

Distance travelled by substance/Distance travelled by solvent Rf value < 1

• If chromatography is used to separate colourless substances, a **locating agent** is required to identify where the substance has travelled to

12.4 - Separation and purification

Methods:

- Filtration
- Crystallisation
- Simple distillation
- Fractional distillation

*distillation is a separation technique that takes advantage of the different boiling points of substances

If the wanted substance is insoluble:

- filter

- wash the residue
- dry the residue in an oven

If the wanted substance is soluble:

- filter
- crystallise the filtrate

Separation of 2 liquids:

- simple distillation

Separation of liquids with similar boiling points:

John Kershaw under https://creativecommons.org/licenses/by-sa/3.0/

Uses a fractionating column to separate the liquids

12.5 - Identification of ions and gases

Anion tests

	test	result
Carbonate	React with dilute acid then test for carbon dioxide using limewater	Bubbling and limewater turns cloudy/milky
Chloride	Acidify with dilute nitric acid and add aqueous silver nitrate	White precipitate forms
Bromide	Acidify with dilute nitric acid and add aqueous silver nitrate	Cream precipitate forms
lodide	Acidify with dilute nitric acid and add aqueous silver nitrate	Yellow precipitate forms
Nitrate	Add aqueous sodium hydroxide and then aluminium foil. Warm the mixture.	Bubbling, gas produced that turns damp red litmus paper blue (ammonia)
Sulfate	Acidify with dilute nitric acid and add aqueous barium nitrate	White precipitate formed
Sulfite	Add acidified aqueous potassium manganate (VII)	The potassium manganate (VII) changes from purple to colourless

Cation tests

	Aqueous sodium hydroxide	Aqueous ammonia
Aluminium	White precipitate formed, soluble in excess forming a colourless solution	White precipitate formed, insoluble in excess
Ammonium	On warming, a gas is produced that turns damp red litmus paper blue (ammonia)	No reaction
Calcium	White precipitate formed, insoluble in excess	No precipitate/very little white precipitate
Chromium(III)	Green precipitate formed, soluble in excess	Green precipitate, insoluble in excess
Copper(II)	Light blue precipitate formed, insoluble in excess	Light blue precipitate, soluble in excess forming a dark blue

		solution
Iron(II)	Green precipitate formed, insoluble in excess	Green precipitate formed, insoluble in excess
Iron(III)	Red-brown precipitate formed, insoluble in excess	Red-brown precipitate formed, insoluble in excess
Zinc	White precipitate formed, soluble in excess forming a colourless solution	White precipitate formed, soluble in excess forming a colourless solution

Test for gases

	test	result
Ammonia	Damp red litmus paper	Turns blue
Carbon dioxide	Limewater	Turns milky
Chlorine	Damp litmus paper	Bleaches
Hydrogen	Lighted splint	Goes off with a squeaky pop
Oxygen	Glowing splint	Relights
Sulphur dioxide	Bubble through acidified potassium manganate (VII)	Changes from purple to colourless

Flame test to identify cations:

Using a nichrome wire loop, dip it into some HCl and hold it to the flame, this cleans the loop. Dip the loop into the cation sample and hold it to a blue flame. Observe the colour changes.

Lithium	Red flame
Sodium	Yellow flame
Potassium	Lilac flame
Calcium	Orange-red flame
Barium	Yellow-green flame
Copper	Blue-green flame

Notes by: Gisele

